Python

Learn Pandas Tutorial with 50 Examples – Data Analysis

Learn Pandas Tutorial with 50 Examples – Data Analysis

Pandas is a popular Python package for data analysis. It is strong and flexible and helps with data cleaning and wrangling tasks. This tutorial explains how to handle various data analysis tasks using pandas package, along with examples.

What is pandas package?

The Pandas package has many functions which are the essence for data handling and manipulation. In short, it can perform the following tasks for you –

  1. Creating a structured data similar to MS Excel spreadsheet.
  2. Reading data from various sources such as CSV, TXT, XLSX, SQL database, R etc.
  3. Selecting rows or columns from data set
  4. Arranging data in ascending or descending order
  5. Filtering data
  6. Summarizing data
  7. Transpose data into wide or long format
  8. Merging and concatenating two datasets

Important pandas functions to remember

The following is a list of common tasks along with pandas functions.

TasksFunctions
Extract Column Namesdf.columns
Select first 2 rowsdf.iloc[:2]
Select first 2 columnsdf.iloc[:,:2]
Select columns by namedf.loc[:,[“col1″,”col2”]]
Select random no. of rowsdf.sample(n = 10)
Select fraction of random rowsdf.sample(frac = 0.2)
Rename the variablesdf.rename( )
Selecting a column as indexdf.set_index( )
Removing rows or columnsdf.drop( )
Sorting valuesdf.sort_values( )
Grouping variablesdf.groupby( )
Filteringdf.query( )
Finding the missing valuesdf.isnull( )
Dropping the missing valuesdf.dropna( )
Removing the duplicatesdf.drop_duplicates( )
Creating dummiespd.get_dummies( )
Rankingdf.rank( )
Cumulative sumdf.cumsum( )
Quantilesdf.quantile( )
Selecting numeric variablesdf.select_dtypes( )
Concatenating two dataframespd.concat()
Merging on basis of common variablepd.merge( )

Importing pandas library

You need to import or load the Pandas library first in order to use it by running the following code.

import pandas as pd

The “pd” is an alias or abbreviation which will be used as a shortcut to access or call pandas functions.

Importing Data

To read or import data from CSV file, you can use read_csv() function. In the function, you need to specify the file location of your CSV file. This dataset includes state income data from 2002 to 2015, comprising 51 rows and 16 columns.

mydata = pd.read_csv("<https://github.com/deepanshu88/Datasets/raw/master/UploadedFiles/income.csv>")

Output

 Index       State    Y2002    Y2003    Y2004    Y2005    Y2006    Y2007  \\
0     A     Alabama  1296530  1317711  1118631  1492583  1107408  1440134
1     A      Alaska  1170302  1960378  1818085  1447852  1861639  1465841
2     A     Arizona  1742027  1968140  1377583  1782199  1102568  1109382
3     A    Arkansas  1485531  1994927  1119299  1947979  1669191  1801213
4     C  California  1685349  1675807  1889570  1480280  1735069  1812546
     Y2008    Y2009    Y2010    Y2011    Y2012    Y2013    Y2014    Y2015
0  1945229  1944173  1237582  1440756  1186741  1852841  1558906  1916661
1  1551826  1436541  1629616  1230866  1512804  1985302  1580394  1979143
2  1752886  1554330  1300521  1130709  1907284  1363279  1525866  1647724
3  1188104  1628980  1669295  1928238  1216675  1591896  1360959  1329341
4  1487315  1663809  1624509  1639670  1921845  1156536  1388461  1644607

Get Variable Names

By using mydata.columnscommand, you can fetch the names of variables of a data frame.

Output

Index(['Index', 'State', 'Y2002', 'Y2003', 'Y2004', 'Y2005', 'Y2006', 'Y2007',
       'Y2008', 'Y2009', 'Y2010', 'Y2011', 'Y2012', 'Y2013', 'Y2014', 'Y2015'],
      dtype='object')

mydata.columns[0:2] returns first two column names ‘Index’, ‘State’. In python, indexing starts from 0.

How to Check Variable Types

You can use the DataFrameName.dtypes command to extract the information of types of variables stored in the data frame.

mydata.dtypes

Output

Index    object
State    object
Y2002     int64
Y2003     int64
Y2004     int64
Y2005     int64
Y2006     int64
Y2007     int64
Y2008     int64
Y2009     int64
Y2010     int64
Y2011     int64
Y2012     int64
Y2013     int64
Y2014     int64
Y2015     int64
dtype: object

Here ‘object‘ means strings or character variables. ‘int64‘ refers to numeric variables (without decimals).

To see the variable type of one variable (let’s say “State”) instead of all the variables, you can use the command below –

mydata['State'].dtypes

It returns dtype(‘O’). In this case, ‘O’ refers to object i.e. type of variable as character.

Changing Data Types

Y2008 is an integer. Suppose we want to convert it to float (numeric variable with decimals) we can write:

mydata.Y2008 = mydata.Y2008.astype(float)
mydata.dtypes

Output


Index     object
State     object
Y2002      int64
Y2003      int64
Y2004      int64
Y2005      int64
Y2006      int64
Y2007      int64
Y2008    float64
Y2009      int64
Y2010      int64
Y2011      int64
Y2012      int64
Y2013      int64
Y2014      int64
Y2015      int64
dtype: object

How to Check No. of Rows and Columns


mydata.shape

Output


(51, 16)

51 is the number of rows and 16 is the number of columns.

You can also use shape[0] to see the number of rows (similar to nrow() in R) and shape[1] for number of columns (similar to ncol() in R).

mydata.shape[0]
mydata.shape[1]

View First/Last N Rows

By default head( ) shows first 5 rows. If we want to see a specific number of rows we can mention it in the parenthesis. Similarly tail( ) function shows last 5 rows by default.

mydata.head()
mydata.head(2)  #shows first 2 rows.
mydata.tail()
mydata.tail(2)  #shows last 2 rows

Alternatively, any of the following commands can be used to fetch first five rows. mydata[0:5] mydata.iloc[0:5]

Define Categorical Variable

Like factors() function in R,we can include categorical variable in python using “category” dtype.

s = pd.Series([1,2,3,1,2], dtype="category")
s
0    1
1    2
2    3
3    1
4    2
dtype: category
Categories (3, int64): [1, 2, 3]

Extract Unique Values

The unique() function shows the unique levels or categories in the dataset.

mydata.Index.unique()

Output

array(['A', 'C', 'D', ..., 'U', 'V', 'W'], dtype=object)

The nunique( ) shows the number of unique values.

mydata.Index.nunique()

It returns 19 as index column contains distinct 19 values.

Generate Cross Tab

pd.crosstab( ) is used to create a bivariate frequency distribution. Here the bivariate frequency distribution is between Index and State columns.

pd.crosstab(mydata.Index,mydata.State)

Creating frequency distribution

mydata.Index selects the ‘Index’ column of ‘mydata’ dataset and value_counts( ) creates a frequency distribution. By default ascending = False i.e. it will show the ‘Index’ having the maximum frequency on the top.

mydata.Index.value_counts(ascending = True)

Output

F    1
G    1
U    1
L    1
H    1
P    1
R    1
D    2
T    2
S    2
V    2
K    2
O    3
C    3
I    4
W    4
A    4
M    8
N    8
Name: Index, dtype: int64

Random Sampling

mydata.sample( ) is used to draw random samples from the dataset containing all the columns. Here n = 5 depicts we need 5 columns and frac = 0.1 tells that we need 10 percent of the data as my sample.

mydata.sample(n = 5)
mydata.sample(frac = 0.1)

Selecting Columns

There are multiple ways you can select a particular column. Both the following line of code selects State variable from mydata data frame.

mydata["State"]
mydata.State

To select multiple columns by name, you can use the following syntax.

mydata[["Index","State","Y2008"]]

To select only specific columns and rows, we use either loc[ ] or iloc[ ] functions. The index or columns to be selected are passed as lists. “Index”:”Y2008″ denotes the that all the columns from Index to Y2008 are to be selected.

Syntax of df.loc[ ]

df.loc[row_index , column_index]
mydata.loc[:,["Index","State","Y2008"]]
mydata.loc[0:2,["Index","State","Y2008"]] #Selecting rows with Index label 0 to 2 & columns
mydata.loc[:,"Index":"Y2008"] #Selecting consecutive columns
#In the above command both Index and Y2008 are included.
mydata.iloc[:,0:5] #Columns from 1 to 5 are included. 6th column not included

Difference between loc and iloc

loc considers rows (or columns) with particular labels from the index. Whereas iloc considers rows (or columns) at particular positions in the index so it only takes integers.

x = pd.DataFrame({"var1" : np.arange(1,20,2)}, index=[9,8,7,6,10, 1, 2, 3, 4, 5])

Output


    var1
9      1
8      3
7      5
6      7
10     9
1     11
2     13
3     15
4     17
5     19

Renaming Variables

We create a dataframe ‘data’ for information of people and their respective zodiac signs.

data = pd.DataFrame({"A" : ["John","Mary","Julia","Kenny","Henry"], "B" : ["Libra","Capricorn","Aries","Scorpio","Aquarius"]})
data

Output

       A          B
0   John      Libra
1   Mary  Capricorn
2  Julia      Aries
3  Kenny    Scorpio
4  Henry   Aquarius

If all the columns are to be renamed then we can use data.columns and assign the list of new column names.

#Renaming all the variables.
data.columns = ['Names','Zodiac Signs']

Output

   Names Zodiac Signs
0   John        Libra
1   Mary    Capricorn
2  Julia        Aries
3  Kenny      Scorpio
4  Henry     Aquarius

If only some of the variables are to be renamed then we can use rename( ) function where the new names are passed in the form of a dictionary.

#Renaming only some of the variables.
data.rename(columns = {"Names":"Cust_Name"},inplace = True)

Output

  Cust_Name Zodiac Signs
0      John        Libra
1      Mary    Capricorn
2     Julia        Aries
3     Kenny      Scorpio
4     Henry     Aquarius

By default in pandas inplace = False which means that no changes are made in the original dataset. Thus if we wish to alter the original dataset we need to define inplace = True.

Suppose we want to replace only a particular character in the list of the column names then we can use str.replace( ) function. For example, renaming the variables which contain “Y” as “Year”

mydata.columns = mydata.columns.str.replace('Y' , 'Year ')
mydata.columns

Output


Index(['Index', 'State', 'Year 2002', 'Year 2003', 'Year 2004', 'Year 2005',
       'Year 2006', 'Year 2007', 'Year 2008', 'Year 2009', 'Year 2010',
       'Year 2011', 'Year 2012', 'Year 2013', 'Year 2014', 'Year 2015'],
      dtype='object')

Setting Column as Index

Using set_index(“column name”) we can set the indices as that column and that column gets removed.

mydata.set_index("Index",inplace = True)
mydata.head()
#Note that the indices have changed and Index column is now no more a column
mydata.columns
mydata.reset_index(inplace = True)
mydata.head()

reset_index( ) tells us that one should use the by default indices.

Removing columns and rows

To drop a column we use drop( ) where the first argument is a list of columns to be removed.

By default axis = 0 which means the operation should take place horizontally, row wise. To remove a column we need to set axis = 1.

mydata.drop('Index',axis = 1)
#Alternatively
mydata.drop("Index",axis = "columns")
mydata.drop(['Index','State'],axis = 1)
mydata.drop(0,axis = 0)
mydata.drop(0,axis = "index")
mydata.drop([0,1,2,3],axis = 0)

Also inplace = False by default thus no alterations are made in the original dataset. axis = “columns” and axis = “index” means the column and row(index) should be removed respectively.

Sorting Data

To sort the data sort_values( ) function is deployed. By default inplace = False and ascending = True.

mydata.sort_values("State",ascending = False)
mydata.sort_values("State",ascending = False,inplace = True)
mydata.Y2006.sort_values()

We have got duplicated for Index thus we need to sort the dataframe firstly by Index and then for each particular index we sort the values by Y2002.

mydata.sort_values(["Index","Y2002"])

Create new variables

Using eval( ) arithmetic operations on various columns can be carried out in a dataset.

mydata["difference"] = mydata.Y2008-mydata.Y2009
#Alternatively
mydata["difference2"] = mydata.eval("Y2008 - Y2009")
mydata.head()

Output

 Index       State    Y2002    Y2003    Y2004    Y2005    Y2006    Y2007  \\
0     A     Alabama  1296530  1317711  1118631  1492583  1107408  1440134
1     A      Alaska  1170302  1960378  1818085  1447852  1861639  1465841
2     A     Arizona  1742027  1968140  1377583  1782199  1102568  1109382
3     A    Arkansas  1485531  1994927  1119299  1947979  1669191  1801213
4     C  California  1685349  1675807  1889570  1480280  1735069  1812546
       Y2008    Y2009    Y2010    Y2011    Y2012    Y2013    Y2014    Y2015  \\
0  1945229.0  1944173  1237582  1440756  1186741  1852841  1558906  1916661
1  1551826.0  1436541  1629616  1230866  1512804  1985302  1580394  1979143
2  1752886.0  1554330  1300521  1130709  1907284  1363279  1525866  1647724
3  1188104.0  1628980  1669295  1928238  1216675  1591896  1360959  1329341
4  1487315.0  1663809  1624509  1639670  1921845  1156536  1388461  1644607
   difference  difference2
0      1056.0       1056.0
1    115285.0     115285.0
2    198556.0     198556.0
3   -440876.0    -440876.0
4   -176494.0    -176494.0


mydata.ratio = mydata.Y2008/mydata.Y2009

The above command does not work, thus to create new columns we need to use square brackets.

We can also use assign( ) function but this command does not make changes in the original data as there is no inplace parameter. Hence we need to save it in a new dataset.

data = mydata.assign(ratio = (mydata.Y2008 / mydata.Y2009))
data.head()

Calculating Descriptive Statistics

describe( ) is used to find some statistics like mean,minimum, quartiles etc. for numeric variables.

mydata.describe() #for numeric variables

Output

            Y2002         Y2003         Y2004         Y2005         Y2006  \\
count  5.100000e+01  5.100000e+01  5.100000e+01  5.100000e+01  5.100000e+01
mean   1.566034e+06  1.509193e+06  1.540555e+06  1.522064e+06  1.530969e+06
std    2.464425e+05  2.641092e+05  2.813872e+05  2.671748e+05  2.505603e+05
min    1.111437e+06  1.110625e+06  1.118631e+06  1.122030e+06  1.102568e+06
25%    1.374180e+06  1.292390e+06  1.268292e+06  1.267340e+06  1.337236e+06
50%    1.584734e+06  1.485909e+06  1.522230e+06  1.480280e+06  1.531641e+06
75%    1.776054e+06  1.686698e+06  1.808109e+06  1.778170e+06  1.732259e+06
max    1.983285e+06  1.994927e+06  1.979395e+06  1.990062e+06  1.985692e+06
              Y2007         Y2008         Y2009         Y2010         Y2011  \\
count  5.100000e+01  5.100000e+01  5.100000e+01  5.100000e+01  5.100000e+01
mean   1.553219e+06  1.538398e+06  1.658519e+06  1.504108e+06  1.574968e+06
std    2.539575e+05  2.958132e+05  2.361854e+05  2.400771e+05  2.657216e+05
min    1.109382e+06  1.112765e+06  1.116168e+06  1.103794e+06  1.116203e+06
25%    1.322419e+06  1.254244e+06  1.553958e+06  1.328439e+06  1.371730e+06
50%    1.563062e+06  1.545621e+06  1.658551e+06  1.498662e+06  1.575533e+06
75%    1.780589e+06  1.779538e+06  1.857746e+06  1.639186e+06  1.807766e+06
max    1.983568e+06  1.990431e+06  1.993136e+06  1.999102e+06  1.992996e+06
              Y2012         Y2013         Y2014         Y2015
count  5.100000e+01  5.100000e+01  5.100000e+01  5.100000e+01
mean   1.591135e+06  1.530078e+06  1.583360e+06  1.588297e+06
std    2.837675e+05  2.827299e+05  2.601554e+05  2.743807e+05
min    1.108281e+06  1.100990e+06  1.110394e+06  1.110655e+06
25%    1.360654e+06  1.285738e+06  1.385703e+06  1.372523e+06
50%    1.643855e+06  1.531212e+06  1.580394e+06  1.627508e+06
75%    1.866322e+06  1.725377e+06  1.791594e+06  1.848316e+06
max    1.988270e+06  1.994022e+06  1.990412e+06  1.996005e+06

For character or string variables, you can write include = [‘object’]. It will return total count, maximum occurring string and its frequency

mydata.describe(include = ['object']) #Only for strings / objects

To find out specific descriptive statistics of each column of data frame

mydata.mean()
mydata.median()
mydata.agg(["mean","median"])

agg( ) performs aggregation with summary functions like sum, mean, median, min, max etc.

How to run functions for a particular column(s)?

mydata.Y2008.mean()
mydata.Y2008.median()
mydata.Y2008.min()
mydata.loc[:,["Y2002","Y2008"]].max()

GroupBy function

To group the data by a categorical variable we use groupby( ) function and hence we can do the operations on each category.

mydata.groupby("Index")["Y2002","Y2003"].min()

Output

        Y2002    Y2003
Index
A      1170302  1317711
C      1343824  1232844
D      1111437  1268673
F      1964626  1468852
G      1929009  1541565
H      1461570  1200280
I      1353210  1438538
K      1509054  1290700
L      1584734  1110625
M      1221316  1149931
N      1395149  1114500
O      1173918  1334639
P      1320191  1446723
R      1501744  1942942
S      1159037  1150689
T      1520591  1310777
U      1771096  1195861
V      1134317  1163996
W      1677347  1380662

To run multiple summary functions, we can use agg( ) function which is used to aggregate the data.

mydata.groupby("Index")["Y2002","Y2003"].agg(["min","max","mean"])

The following command finds minimum and maximum values for Y2002 and only mean for Y2003

mydata.groupby("Index").agg({"Y2002": ["min","max"],"Y2003" : "mean"})

Output

          Y2002                 Y2003
           min      max         mean
Index
A      1170302  1742027  1810289.000
C      1343824  1685349  1595708.000
D      1111437  1330403  1631207.000
F      1964626  1964626  1468852.000
G      1929009  1929009  1541565.000
H      1461570  1461570  1200280.000
I      1353210  1776918  1536164.500
K      1509054  1813878  1369773.000
L      1584734  1584734  1110625.000
M      1221316  1983285  1535717.625
N      1395149  1885081  1382499.625
O      1173918  1802132  1569934.000
P      1320191  1320191  1446723.000
R      1501744  1501744  1942942.000
S      1159037  1631522  1477072.000
T      1520591  1811867  1398343.000
U      1771096  1771096  1195861.000
V      1134317  1146902  1498122.500
W      1677347  1977749  1521118.500

In order to rename the columns after groupby, you can use tuple. See the code below.

mydata.groupby("Index").agg({"Y2002" : [("Y2002_min","min"),("Y2002_max","max")], "Y2003" : [("Y2003_mean","mean")]})

Renaming columns can also be done via the method below.

dt = mydata.groupby("Index").agg({"Y2002": ["min","max"],"Y2003" : "mean"})
dt.columns = ['Y2002_min', 'Y2002_max', 'Y2003_mean']

Groupby more than 1 column

mydata.groupby(["Index", "State"]).agg({"Y2002": ["min","max"],"Y2003" : "mean"})

By default, option as_index=True is enabled in groupby which means the columns you use in groupby will become an index in the new dataframe. To disable it, you can make it False which stores the variables you use in groupby in different columns in the new dataframe.

dt = mydata.groupby(["Index","State"], as_index=False)["Y2002","Y2003"].min()

Filtering

To filter only those rows which have Index as “A” we write:

mydata[mydata.Index == "A"]
#Alternatively
mydata.loc[mydata.Index == "A",:]

Output

  Index     State    Y2002    Y2003    Y2004    Y2005    Y2006    Y2007  \\
0     A   Alabama  1296530  1317711  1118631  1492583  1107408  1440134
1     A    Alaska  1170302  1960378  1818085  1447852  1861639  1465841
2     A   Arizona  1742027  1968140  1377583  1782199  1102568  1109382
3     A  Arkansas  1485531  1994927  1119299  1947979  1669191  1801213
     Y2008    Y2009    Y2010    Y2011    Y2012    Y2013    Y2014    Y2015
0  1945229  1944173  1237582  1440756  1186741  1852841  1558906  1916661
1  1551826  1436541  1629616  1230866  1512804  1985302  1580394  1979143
2  1752886  1554330  1300521  1130709  1907284  1363279  1525866  1647724
3  1188104  1628980  1669295  1928238  1216675  1591896  1360959  1329341

To select the States having Index as “A”:

mydata.loc[mydata.Index == "A","State"]
mydata.loc[mydata.Index == "A",:].State

To filter the rows with Index as “A” and mydata for 2002 > 1500000″

mydata.loc[(mydata.Index == "A") & (mydata.Y2002 > 1500000),:]

To filter the rows with index either “A” or “W”, we can use isin( ) function:

mydata.loc[(mydata.Index == "A") | (mydata.Index == "W"),:]
#Alternatively.
mydata.loc[mydata.Index.isin(["A","W"]),:]

Output

  Index          State    Y2002    Y2003    Y2004    Y2005    Y2006    Y2007  \\
0      A        Alabama  1296530  1317711  1118631  1492583  1107408  1440134
1      A         Alaska  1170302  1960378  1818085  1447852  1861639  1465841
2      A        Arizona  1742027  1968140  1377583  1782199  1102568  1109382
3      A       Arkansas  1485531  1994927  1119299  1947979  1669191  1801213
47     W     Washington  1977749  1687136  1199490  1163092  1334864  1621989
48     W  West Virginia  1677347  1380662  1176100  1888948  1922085  1740826
49     W      Wisconsin  1788920  1518578  1289663  1436888  1251678  1721874
50     W        Wyoming  1775190  1498098  1198212  1881688  1750527  1523124
      Y2008    Y2009    Y2010    Y2011    Y2012    Y2013    Y2014    Y2015
0   1945229  1944173  1237582  1440756  1186741  1852841  1558906  1916661
1   1551826  1436541  1629616  1230866  1512804  1985302  1580394  1979143
2   1752886  1554330  1300521  1130709  1907284  1363279  1525866  1647724
3   1188104  1628980  1669295  1928238  1216675  1591896  1360959  1329341
47  1545621  1555554  1179331  1150089  1775787  1273834  1387428  1377341
48  1238174  1539322  1539603  1872519  1462137  1683127  1204344  1198791
49  1980167  1901394  1648755  1940943  1729177  1510119  1701650  1846238
50  1587602  1504455  1282142  1881814  1673668  1994022  1204029  1853858

Alternatively we can use query( ) function which also eliminates the need to specify data frame while mentioning column(s) and lets you write our filtering criteria:

mydata.query('Y2002>1700000 & Y2003 > 1500000')

Dealing with missing values

We create a new dataframe named ‘crops’ and to create a NaN value we use np.nan by importing numpy.

import numpy as np
mydata = {'Crop': ['Rice', 'Wheat', 'Barley', 'Maize'],
    'Yield': [1010, 1025.2, 1404.2, 1251.7],
    'cost' : [102, np.nan, 20, 68]}
crops = pd.DataFrame(mydata)
crops

isnull( ) returns True and notnull( ) returns False if the value is NaN.

crops.isnull() #same as is.na in R
crops.notnull() #opposite of previous command.
crops.isnull().sum() #No. of missing values.

crops.cost.isnull() firstly subsets the ‘cost’ from the dataframe and returns a logical vector with isnull()

crops[crops.cost.isnull()] #shows the rows with NAs.
crops[crops.cost.isnull()].Crop #shows the rows with NAs in crops.Crop
crops[crops.cost.notnull()].Crop #shows the rows without NAs in crops.Crop

To drop all the rows which have missing values in any rows we use dropna(how = “any”) . By default inplace = False . If how = “all” means drop a row if all the elements in that row are missing

crops.dropna(how = "any").shape
crops.dropna(how = "all").shape

To remove NaNs if any of ‘Yield’ or’cost’ are missing we use the subset parameter and pass a list:

crops.dropna(subset = ['Yield',"cost"],how = 'any').shape
crops.dropna(subset = ['Yield',"cost"],how = 'all').shape

Replacing the missing values by “UNKNOWN” sub attribute in Column name.

crops['cost'].fillna(value = "UNKNOWN",inplace = True)
crops

Dealing with duplicates

We create a new dataframe comprising of items and their respective prices.

data = pd.DataFrame({"Items" : ["TV","Washing Machine","Mobile","TV","TV","Washing Machine"], "Price" : [10000,50000,20000,10000,10000,40000]})
data

Output

            Items  Price
0               TV  10000
1  Washing Machine  50000
2           Mobile  20000
3               TV  10000
4               TV  10000
5  Washing Machine  40000

duplicated() returns a logical vector returning True when encounters duplicated.

data.loc[data.duplicated(),:]
data.loc[data.duplicated(keep = "first"),:]

By default keep = ‘first’ i.e. the first occurence is considered a unique value and its repetitions are considered as duplicates. If keep = “last” the last occurence is considered a unique value and all its repetitions are considered as duplicates.

data.loc[data.duplicated(keep = "last"),:] #last entries are not there,indices have changed.

If keep = “False” then it considers all the occurences of the repeated observations as duplicates.

data.loc[data.duplicated(keep = False),:] #all the duplicates, including unique are shown.

To drop the duplicates drop_duplicates is used with default inplace = False, keep = ‘first’ or ‘last’ or ‘False’ have the respective meanings as in duplicated( )

data.drop_duplicates(keep = "first")
data.drop_duplicates(keep = "last")
data.drop_duplicates(keep = False,inplace = True) #by default inplace = False
data

Creating dummies

Let’s explore the iris dataset, consisting of 150 rows and 5 columns, providing details on 3 species of flowers.

iris = pd.read_csv("<https://github.com/deepanshu88/Datasets/raw/master/UploadedFiles/iris.csv>")
iris.head()

Output

 Sepal.Length  Sepal.Width  Petal.Length  Petal.Width Species
0           5.1          3.5           1.4          0.2  setosa
1           4.9          3.0           1.4          0.2  setosa
2           4.7          3.2           1.3          0.2  setosa
3           4.6          3.1           1.5          0.2  setosa
4           5.0          3.6           1.4          0.2  setosa

map( ) function is used to match the values and replace them in the new series automatically created.

iris["setosa"] = iris.Species.map({"setosa" : 1,"versicolor":0, "virginica" : 0})
iris.head()

To create dummies get_dummies( ) is used. iris.Species.prefix = “Species” adds a prefix ‘ Species’ to the new series created.

pd.get_dummies(iris.Species,prefix = "Species")
pd.get_dummies(iris.Species,prefix = "Species").iloc[:,0:1] #1 is not included
species_dummies = pd.get_dummies(iris.Species,prefix = "Species").iloc[:,0:]

With concat( ) function we can join multiple series or dataframes. axis = 1 denotes that they should be joined columnwise.

iris = pd.concat([iris,species_dummies],axis = 1)
iris.head()

Output

   Sepal.Length  Sepal.Width  Petal.Length  Petal.Width Species  \\
0           5.1          3.5           1.4          0.2  setosa
1           4.9          3.0           1.4          0.2  setosa
2           4.7          3.2           1.3          0.2  setosa
3           4.6          3.1           1.5          0.2  setosa
4           5.0          3.6           1.4          0.2  setosa
   Species_setosa  Species_versicolor  Species_virginica
0               1                   0                  0
1               1                   0                  0
2               1                   0                  0
3               1                   0                  0
4               1                   0                  0

It is usual that for a variable with ‘n’ categories we creat ‘n-1’ dummies, thus to drop the first ‘dummy’ column we write drop_first = True

pd.get_dummies(iris,columns = ["Species"],drop_first = True).head()

Ranking

To create a dataframe of all the ranks we use rank( )

iris.rank()

Ranking by a variable

Suppose we want to rank the Sepal.Length for different species in ascending order:

iris['Rank2'] = iris['Sepal.Length'].groupby(iris["Species"]).rank(ascending=1)
iris.head()

Calculating the Cumulative sum

Using cumsum( ) function we can obtain the cumulative sum.

iris['cum_sum'] = iris["Sepal.Length"].cumsum()
iris.head()

Cumulative sum by a variable

To find the cumulative sum of sepal lengths for different species we use groupby( ) and then use cumsum( )

iris["cumsum2"] = iris.groupby(["Species"])["Sepal.Length"].cumsum()
iris.head()

Calculating Percentiles

Various quantiles can be obtained by using quantile( )

iris.quantile(0.5)
iris.quantile([0.1,0.2,0.5])
iris.quantile(0.55)

if else in Python

We create a new dataframe of students’ name and their respective zodiac signs.

students = pd.DataFrame({'Names': ['John','Mary','Henry','Augustus','Kenny'],
'Zodiac Signs': ['Aquarius','Libra','Gemini','Pisces','Virgo']})
def name(row):
    if row["Names"] in ["John","Henry"]:
        return "yes"
    else:
        return "no"
students['flag'] = students.apply(name, axis=1)
students

Functions in python are defined using the block keyword def , followed with the function’s name as the block’s name. apply( ) function applies function along rows or columns of dataframe.

Note :If using simple ‘if else’ we need to take care of the indentation . Python does not involve curly braces for the loops and if else.

Output

      Names Zodiac Signs flag
0      John     Aquarius  yes
1      Mary        Libra   no
2     Henry       Gemini  yes
3  Augustus       Pisces   no
4     Kenny        Virgo   no

Alternatively, By importing numpy we can use np.where. The first argument is the condition to be evaluated, 2nd argument is the value if condition is True and last argument defines the value if the condition evaluated returns False.

import numpy as np
students['flag'] = np.where(students['Names'].isin(['John','Henry']), 'yes', 'no')
students

Multiple Conditions : If Else-if Else

def mname(row):
    if row["Names"] == "John" and row["Zodiac Signs"] == "Aquarius" :
        return "yellow"
    elif row["Names"] == "Mary" and row["Zodiac Signs"] == "Libra" :
        return "blue"
    elif row["Zodiac Signs"] == "Pisces" :
        return "blue"
    else:
        return "black"
students['color'] = students.apply(mname, axis=1)
students

We create a list of conditions and their respective values if evaluated True and use np.select where default value is the value if all the conditions is False.

conditions = [
  (students['Names'] == 'John') & (students['Zodiac Signs'] == 'Aquarius'),
  (students['Names'] == 'Mary') & (students['Zodiac Signs'] == 'Libra'),
  (students['Zodiac Signs'] == 'Pisces')]
choices = ['yellow', 'blue', 'purple']
students['color'] = np.select(conditions, choices, default='black')
students
      Names Zodiac Signs flag   color
0      John     Aquarius  yes  yellow
1      Mary        Libra   no    blue
2     Henry       Gemini  yes   black
3  Augustus       Pisces   no  purple
4     Kenny        Virgo   no   black

Select numeric or categorical columns only

To include numeric columns we use select_dtypes( )

data1 = iris.select_dtypes(include=[np.number])
data1.head()

_get_numeric_data also provides utility to select the numeric columns only.

data3 = iris._get_numeric_data()
data3.head(3)

Output

  Sepal.Length  Sepal.Width  Petal.Length  Petal.Width  cum_sum  cumsum2
0           5.1          3.5           1.4          0.2      5.1      5.1
1           4.9          3.0           1.4          0.2     10.0     10.0
2           4.7          3.2           1.3          0.2     14.7     14.7

For selecting categorical variables

data4 = iris.select_dtypes(include = ['object'])
data4.head(2)
 Species
0  setosa
1  setosa

Combine Dataframes

We create 2 dataframes containing the details of the students:

students = pd.DataFrame({'Names': ['John','Mary','Henry','Augustus','Kenny'],
            'Zodiac Signs': ['Aquarius','Libra','Gemini','Pisces','Virgo']})
students2 = pd.DataFrame({'Names': ['John','Mary','Henry','Augustus','Kenny'],
             'Marks' : [50,81,98,25,35]})

using pd.concat( ) function we can join the 2 dataframes:

data = pd.concat([students,students2]) #by default axis = 0

Output

   Marks     Names Zodiac Signs
0    NaN      John     Aquarius
1    NaN      Mary        Libra
2    NaN     Henry       Gemini
3    NaN  Augustus       Pisces
4    NaN     Kenny        Virgo
0   50.0      John          NaN
1   81.0      Mary          NaN
2   98.0     Henry          NaN
3   25.0  Augustus          NaN
4   35.0     Kenny          NaN

By default axis = 0 thus the new dataframe will be added row-wise. If a column is not present then in one of the dataframes it creates NaNs. To join column wise we set axis = 1

data = pd.concat([students,students2],axis = 1)
data
      Names Zodiac Signs  Marks     Names
0      John     Aquarius     50      John
1      Mary        Libra     81      Mary
2     Henry       Gemini     98     Henry
3  Augustus       Pisces     25  Augustus
4     Kenny        Virgo     35     Kenny

Using append function we can join the dataframes row-wise

students.append(students2) #for rows

Alternatively we can create a dictionary of the two data frames and can use pd.concat to join the dataframes row wise

classes = {'x': students, 'y': students2}
result = pd.concat(classes)
result

Output

     Marks     Names Zodiac Signs
x 0    NaN      John     Aquarius
  1    NaN      Mary        Libra
  2    NaN     Henry       Gemini
  3    NaN  Augustus       Pisces
  4    NaN     Kenny        Virgo
y 0   50.0      John          NaN
  1   81.0      Mary          NaN
  2   98.0     Henry          NaN
  3   25.0  Augustus          NaN
  4   35.0     Kenny          NaN

Merging or Joining Dataframes

We take 2 dataframes with different number of observations:

students = pd.DataFrame({'Names': ['John','Mary','Henry','Augustus','Kenny'],
                         'Zodiac Signs': ['Aquarius','Libra','Gemini','Pisces','Virgo']})
students2 = pd.DataFrame({'Names': ['John','Mary','Henry','Augustus','Kenny'],
                          'Marks' : [50,81,98,25,35]})

Using pd.merge we can join the two dataframes. on = ‘Names’ denotes the common variable on the basis of which the dataframes are to be combined is ‘Names’

result = pd.merge(students, students2, on='Names') #it only takes intersections
result

Output

   Names Zodiac Signs  Marks
0   John     Aquarius     50
1   Mary        Libra     81
2  Henry       Gemini     98

By default how = “inner” thus it takes only the common elements in both the dataframes. If you want all the elements in both the dataframes set how = “outer”

result = pd.merge(students, students2, on='Names',how = "outer") #it only takes unions
result

Output

      Names Zodiac Signs  Marks
0      John     Aquarius   50.0
1      Mary        Libra   81.0
2     Henry       Gemini   98.0
3     Maria    Capricorn    NaN
4  Augustus          NaN   25.0
5     Kenny          NaN   35.0

To take only intersections and all the values in left df set how = ‘left’

result = pd.merge(students, students2, on='Names',how = "left")
result

Output

   Names Zodiac Signs  Marks
0   John     Aquarius   50.0
1   Mary        Libra   81.0
2  Henry       Gemini   98.0
3  Maria    Capricorn    NaN

Similarly how = ‘right’ takes only intersections and all the values in right df.

result = pd.merge(students, students2, on='Names',how = "right",indicator = True)
result

Output

      Names Zodiac Signs  Marks      _merge
0      John     Aquarius     50        both
1      Mary        Libra     81        both
2     Henry       Gemini     98        both
3  Augustus          NaN     25  right_only
4     Kenny          NaN     35  right_only
Suggested Articles

Leave a Reply

Your email address will not be published. Required fields are marked *